PROPELLANES—XXXIX

"C NMR-SPECTRA OF CONFIGURATIONALLY DIFFERENT PROPELLANE ISOMERS CONTAINING CYCLOPROPANE RINGS[†]

H. GILBOA, A. RUTTIMANN and D. GINSBURG*

Department of Chemistry, Israel Institute of Technology, Haifa, Israel

(Received in UK 27 September 1976; Accepted for publication 16 November 1976)

Abstract—The *mono* and *bis*-adducts obtained in the reaction of carbethoxycarbene with 12-methyl-11.13-dioxo-12aza[4.4.3]propella-3.8-diene have established configurations of cyclopropane rings and ester groups with respect to the hetero-ring. Thus "CNMR measurements afford data which correlates the "C absorptions of these isomers with their configurations.

Many products, 3 of 4 possible *mono*-adducts and 5 of 10 possible *bis*-adducts, obtained from the reaction of the methylimide 1 and ethyl diazoacetate in 1,2-dichloroethane at 80° in the presence of copper sulfate, have all been interrelated chemically.¹ (A sixth *bis*-isomer of unknown structure was also isolated.)¹ Since the structure including all configurational detail of an acid corresponding to one of the above 8 compounds was established unequivocally by X-ray crystallography,² the structures of all of these 8 products 2–9 are known in full configurational detail.

*Part XXXVIII. J. Kalo, E. Vogel and D. Ginsburg, Tetrahedron 33, 1183 (1977).

Ó

1

Compound

. .

0 U

ň

ö

2_4

1

- .

The table records the 11 C-chemical shift data relative to TMS for compounds 1-6.8 and 9.

The spectral assignments allow comparison between

¹¹¹ 6	51.0	49.5	49.9	49.0	48.7	49,0	47.7	48.1
C ₂ ; C ₅	32.3	32.1	32.3	31.1	31.9	31 . 7	30.7	31.2
" 3 ^{1 C} 4	128 5	128.5	128.6	118.6	17.9	18.1	18.5	18.3
γc ₇ :c _{1e}	321.3	32.1	24.5	3C.8	31.9	1. 4 . 1.	30.7	2 3 .7
FC ₈ ;C ₃	128.5	18 .e	26.3	19.0	17.9	19.5	17.6	16.1
C:: - ^C :3	182.5	182.5	-183	181.8	182.1	182.8	181.6	182 5
^C 12	25.0	25.3	- 15	24.7	25.5	25.3	24.9	24.9
n C ₁₄		31.3	5 19.8	32.6	30.7	18.3	30.1	18.3
C ₁₅		172.5	-171	5 172	172.7	171.7	172.7	171.5
C ₁₆	-	60.t	∿ 60	60-7	66.7	60.4	60.7	60 5
C ₁₇	-	14.3	:4.3	14.2	14.3	14.1	14.3	14.3
с ₁₈				-	3 6 , 7	30.4	30.1	31.2
с ₁₉			-	-	172.7	172.7	172.7	:72.7
с _{2с}	-				60.7	60.6	60. 7	60.7
c_21	-	-		-	14.3	14.1	14.3	14.4

the substrate 1, the *mono*-adducts and the *bis*-adducts. They were checked by off resonance or gated decoupling. We observe small differences, e.g. an upfield shift of 0.5-1 ppm in 4 as compared to 2 but this can hardly be used as an unequivocal tool in assigning configuration. The more noticeable shifts (italicized in table) are associated with the cyclopropane ring which is *anti*- to the imide ring with the *endo*-ester group, i.e. a feature common to compounds 3, 6 and 9 (as well as 7 for which we have no data).

The shifts in these compounds as compared to the isomers of other configurations are manifested particularly at the carbon atoms α , β and γ to the carbethoxy group, i.e. C_{14} , C_{*} and C_{9} , C_{*} and C_{10} in the order $\alpha > \gamma > \beta$. This may not be attributed simply to the y-effect.'

EXPERIMENTAL

Measurements were conducted in CDCl₃ solution (50 mg in 1.5 ml). Insufficient quantity of 3 made for difficulty in accuracy. Not enough of 7 was available for measurement. A Bruker WP-60 instrument was used at 15.08 MHz.

REFERENCES

- A. Ruttimann and D. Ginsburg, Tetrahedron 33, 1163 (1977).
- ²B. Schweizer and J. D. Dunitz, Private communication.
- 'N. K. Wilson and J. B. Stothers, *Topics in Stereochemistry* (Edited by E. L. Eliel and N. L. Allinger), Vol. 8, pp. 4-7. Wiley-Interscience, New York (1974).